
IMPLICITLY CONSTRAINED  
SEMI-SUPERVISED LEARNING


Jesse H. Krijthe & Marco Loog




1.

Robust semi-supervised learning is important




2.


ICSSL interesting direction towards this goal




Supervised Learning Example
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Data: Independent Variables (Features) & 
Dependent Variable (Labels)




Supervised Learning Example
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Semi-Supervised Learning
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Applications

Protein function prediction


Webpage classification

 

Part of speech tagging


Image classification

 



Semi-Supervised Learning
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Semi-Supervised Learning
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Good choice?
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Good choice?


−2

−1

0

1

2

−2 −1 0 1 2
X1

X2

y

1

2



How do we safely use unlabeled data to improve 
a classification rule?


Safe/Robust = 

semi-supervised classifier performs no worse 

than supervised counterpart




Is robustness important?




IMPLICITLY CONSTRAINED  
LEAST SQUARES CLASSIFICATION




Least Squares Classification


•  Sometimes referred to as Fisher classifier

•  Assume two classes labeled 1 and 2

•  Simple idea : use ordinary  least squares 

regression on these labels


min
w

kXw � yk22

ŵsup = (X>X)�1X>y



Implicitly constrained SSL


•  Idea: If we would be able to generate all 
possible labelings of the unlabeled objects, 
the true labeling will be one of them.


•  Calculate the least squares classifier for every 
labeling:


•  And select the “best” classifier from this set


⇥ =

⇢
(X>

e Xe)
�1X>

e


y
yu

�
|yu 2 [1, 2]Nu

�

ŵsemi = argmin
w2⇥

d(w, ŵsup)



Implicitly Constrained SSL
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An interesting result


Always better in the transductive setting
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Projected Estimators for Robust Semi-Supervised Classification

L(w,Xe,y⇤
e ) over the labeled as well as the unlabeled ob-

jects. We will refer to this oracle solution as: woracle.

The motivation behind the projection method is to form a
constrained set of parameter vectors w, informed by the
unlabeled objects, that includes woracle. We will then find
the closest projection of wsup onto this set, using an appro-
priate distance measure. This new estimate wsemi, will then
be closer to the oracle solution than wsup.

To form the constrained set, consider all possible labels for
the unlabeled objects yu 2 [�1, 1]Nu . This includes frac-
tional labelings, where an objects is partly assigned to class
�1 and partly to class +1. For instance, 0 indicates the
object is exactly equally assigned to both classes. For a
particular labeling y

>
e =

⇥
y

>
y

>
u
⇤>, we can find the cor-

responding parameter vector by minimizing L(w,Xe,ye).
This objective remains the same as (2) except that fractional
labels are now also included. Minimizing the objective for
all possible labelings generates the following set of solu-
tions:

⇥ =

⇢�
X

>
e Xe

��1
X

>
e


y

yu

�
| yu 2 [�1, 1]Nu

�
(4)

Note that this set, by construction, will also contain the so-
lution woracle, corresponding to the true but unknown label-
ing y

⇤
e . Assuming that woracle is a better solution than wsup,

we would like to move closer to woracle. This can be accom-
plished by projecting wsup onto ⇥. In remains to establish
how to calculate the distance between wsup and any other
w in the space. For reasons which will use the following
metric:

d(x,y) =
q

(x� y)

>
X

>
� X� (x� y) (5)

where we assume X

>
� X� is a positive definite matrix. The

projected estimator can now be found by minimizing this
distance between the supervised solution and solutions in
the constrained set:

wsemi = min

w2⇥
d(w,wsup) (6)

If we take X� = X, one can show this minimization is
equal to minimizing L(w,X,y), the loss on only the la-
beled objects under the constraints given by (4). Setting
X� = Xe measures the distances using both the labeled
and unlabeled data. The latter choice has nice theoretical
properties that we will consider in the next section.

By plugging in the closed form solution of wsup and w for
a given yu, this problem can be written as a convex mini-
mization problem in terms of yu, the unknown, fractional
labels of the unlabeled data. We are left with a quadratic
programming problem, which can be solved using a sim-
ple gradient descent procedure that takes into account the
constraint that the labels are within [�1, 1].

4. Theoretical Analysis

We will show that using the projection method introduced
in the previous section will never increase the surrogate
loss, measured on both labeled and unlabeled objects once
the labels for all the objects are revealed:

Theorem 4.1 Given X, Xu and y, X

>
e Xe positive def-

inite and wsup given by (3). For the projected estima-

tor wsemi proposed in (6), the following result holds:

L(wsemi,Xe,y⇤
e )  L(wsup,Xe,y⇤

e )

In other words: wsemi will always be at least as good or
better than wsup, in terms of the quadratic surrogate loss, in
the transductive setting.

The proof of this result follows from a simple geometric in-
terpretation of our procedure. Consider the following inner
product, used in equation (5):

ha,bi = a

>
X

>
e Xeb (7)

Let HXe = (Rd, h., .i) be the inner product space corre-
sponding with this inner product. Due to the similarity of
the induced metric to a type of weighted Euclidean dis-
tance, this is clearly a Hilbert space, as long as X

>
e Xe is

positive definite. Next, note that the constrained space ⇥

is convex. More precisely, because, for any k 2 [0, 1] and
w1,w2 2 ⇥ we have that

(1� k)w1 + kw2 =

(1� k)
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where this last line holds because ky>
1 + (1 � k)y>

2 2
[�1, 1]Nu . So the constrained space is convex.

By construction wsemi is the closest projection of wsup onto
this convex constrained set ⇥ in HXe . By the Hilbert space
projection theorem (consult, for instance (Aubin, 2000),
proposition 1.4.1), we now have that

d(wsemi,w)  d(wsup,w) (8)

for any w 2 ⇥. In particular consider w = woracle, which
by construction is within ⇥. That is, all possible labelings
correspond to an element in ⇥, so this also holds for the
true labeling y

⇤
u . Plugging in the closed form solution of

woracle into (8) and after some manipulations we find:

d(wsemi,woracle)
2
= L(wsemi,Xe,y

⇤
e ) + C

and

d(wsup,woracle)
2
= L(wsup,Xe,y

⇤
e ) + C

d(w, ŵsup) =
q

(w � ŵsup)>X>
e Xe(w � ŵsup)

If we choose:


Then:




Simulation Studies


Error, Ionosphere Error, Pima Error, BCI

Avg. Loss Test, Ionosphere Avg. Loss Test, Pima Avg. Loss Test, BCI
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Conclusion


•  Robust semi-supervised learning is important

•  ICSSL

– Strong theoretical guarantees in limited settings 

(currently)

–  Interesting empirical results

– Very conservative


•  Next steps

– Other classifiers

– Less conservatism?



