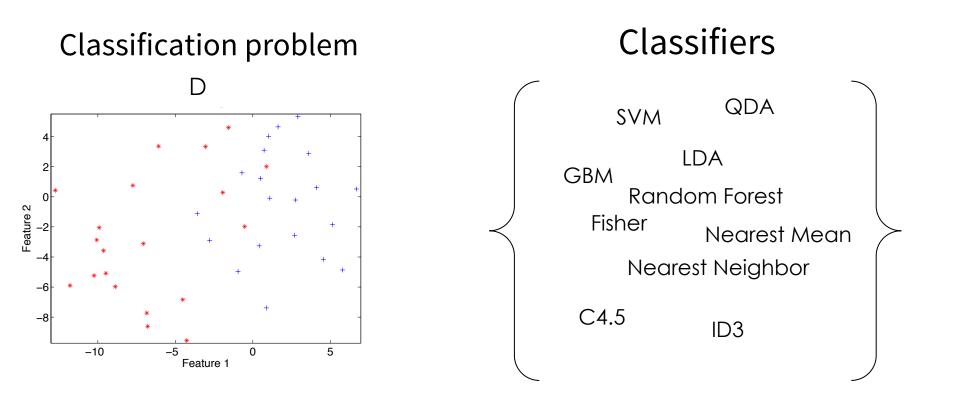
Improving Cross-Validation Classifier Selection Accuracy through Metalearning

Jesse H. Krijthe, Tin Kam Ho, Marco Loog

Classifier Selection Problem



Which classifier gives the lowest error rate *e* when evaluated on a large test set?

- In practice: have no large test set to determine e
- Alternative: estimate e through a cross-validation procedure, \hat{e}_{cv}
- Procedure is *practically* unbiased and intuitive
- Use the estimates of each classifier to select the best one
- Used for:
 - Classifier selection
 - Parameter tuning
 - Feature selection
 - Performance estimation

Is it possible to use meta-learning techniques to improve the *accuracy* (rather than the computational efficiency) of classifier selection using cross-validation?

Cross-validation revisited (1/2)

- C={c₁,..c_m} a set of classifiers, D a dataset
- Calculate the *k*-fold cross-validation error
 - Randomly assign the *n* objects in the dataset to *k* parts (folds)
 - 2. Use fold 2 to *k* to train a classifier
 - 3. Use fold 1 to test its accuracy
 - 4. Cycle through, using each fold as the test set once
 - 5. Average the accuracies over all the folds

	e_1									
D	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold10
	<u>n</u>									
	k	k	k	k	k	k	k	k	k	k

Cross-validation revisited (1/2)

- C={c₁,..c_m} a set of classifiers, D a dataset
- Calculate the *k*-fold cross-validation error
 - Randomly assign the *n* objects in the dataset to *k* parts (folds)
 - 2. Use fold 2 to *k* to train a classifier
 - 3. Use fold 1 to test its accuracy
 - 4. Cycle through, using each fold as the test set once
 - 5. Average the accuracies over all the folds

	e_1	e_2								
D	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold10
	n	n	п	п	п	п	п	п	п	п
	\overline{k}	$\frac{n}{k}$	\overline{k}	\overline{k}						

Cross-validation revisited (1/2)

- C={c₁,..c_m} a set of classifiers, D a dataset
- Calculate the *k*-fold cross-validation error
 - Randomly assign the *n* objects in the dataset to *k* parts (folds)
 - 2. Use fold 2 to *k* to train a classifier
 - 3. Use fold 1 to test its accuracy
 - 4. Cycle through, using each fold as the test set once
 - 5. Average the accuracies over all the folds

 $\hat{e}_{cv} = \sum_{i=1}^{n} \frac{e_i}{k}$

	e_1	e_2	e_3							
D	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold10
	n	п	п	п	п	п	п	п	п	п
	\overline{k}	\overline{k}	$\frac{n}{k}$	\overline{k}						

Cross-validation revisited (2/2)

- Select the classifier with lowest $\hat{e}_{_{cv}}$
- Bias decreases as *k* increases
 - Unbiased as estimator for $n \frac{n}{k}$
 - Small bias for reasonable k, large n
- For a particular dataset, interested in the difference $\, e \,$ and $\, \hat{e}_{_{CV}} \,$
- Variance
 - High as *k* goes to *n*
 - High as *k* goes to 2
 - Lowest usually around 5-10
 - Higher than for bootstrap and resubstition

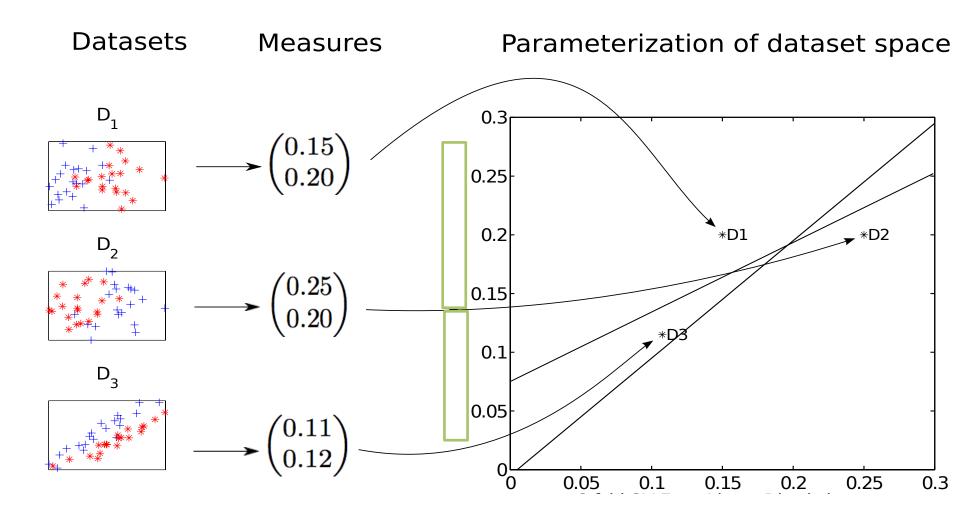
Why would cross-validation fail?

- As Braga-Neto et. al. 2004 and others note, if *n* is small, variance of the cross-validation error estimate becomes large
- Cross-validation error estimates become unreliable for a given dataset
- Specifically: classifier selection based on these estimates may suffer

Meta-learning (1/2)

- Learning which classifier to select based on characteristics of the dataset
- Classifier selection as just another classification problem
 - Classes: the most accurate classifier
 - Features: statistics on the dataset (meta-features)
- Meta-features are preferably
 - Computationally efficient
 - Predictive
 - Interpretable

Meta-learning (2/2)

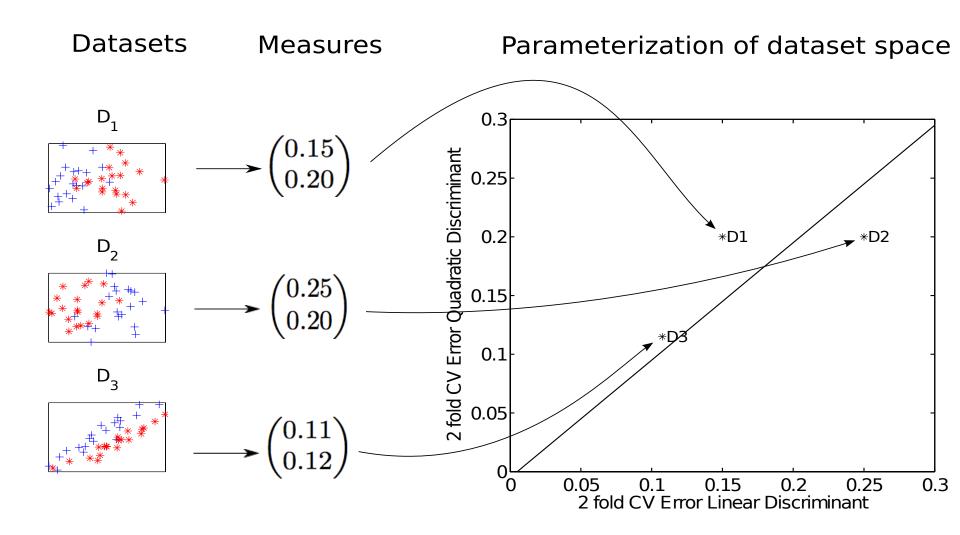


Cross-validation selection as meta-learning

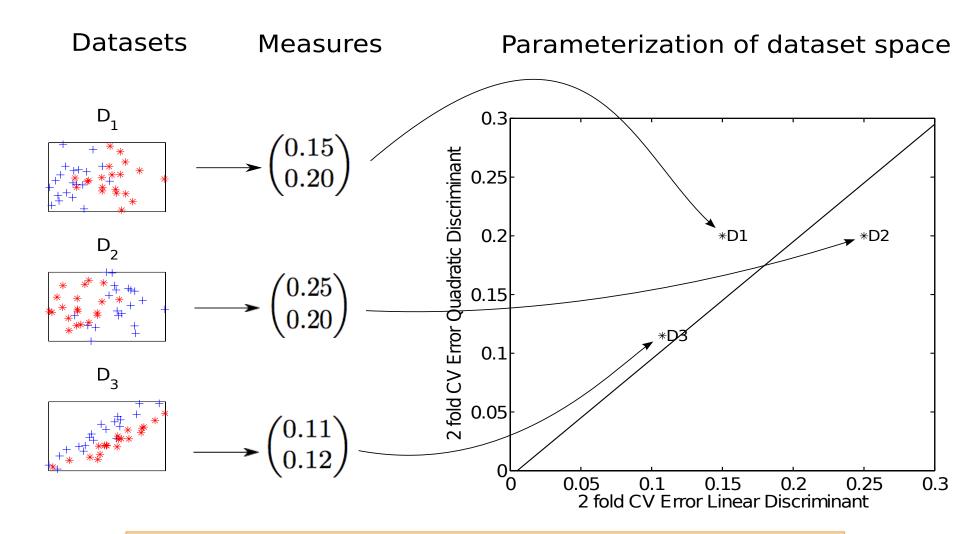
- Cross-validation errors are measures on the dataset as well
- Idea: Treat them as meta-features
- Meta-classifier in this case:
 - Select the classifier with the lowest crossvalidation error
 - Static diagonal rule

Meta-classes	Best classifier (m)
Meta-features	Cross-validation error (m)
Meta-classifier	Static 'diagonal' rule

Cross-validation Meta-problem



Cross-validation Meta-problem



Is this simple, static rule justified?

A Meta-learning Universe (1/3)

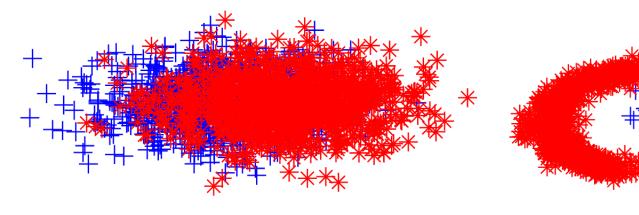
- Choice between two simple classifiers:
 - Nearest Mean
 - 1-Nearest Neighbor
- Two simple problem types
 - Each suited to one of the classifiers
 - Small training samples (20-100)
 - Generate enough data to estimate the real error (~2000)
 - Problem types have equal priors
- Slightly contrived
 - Visualization
 - Illustrate Concept

A Meta-learning Universe (2/3)

Gaussian problem

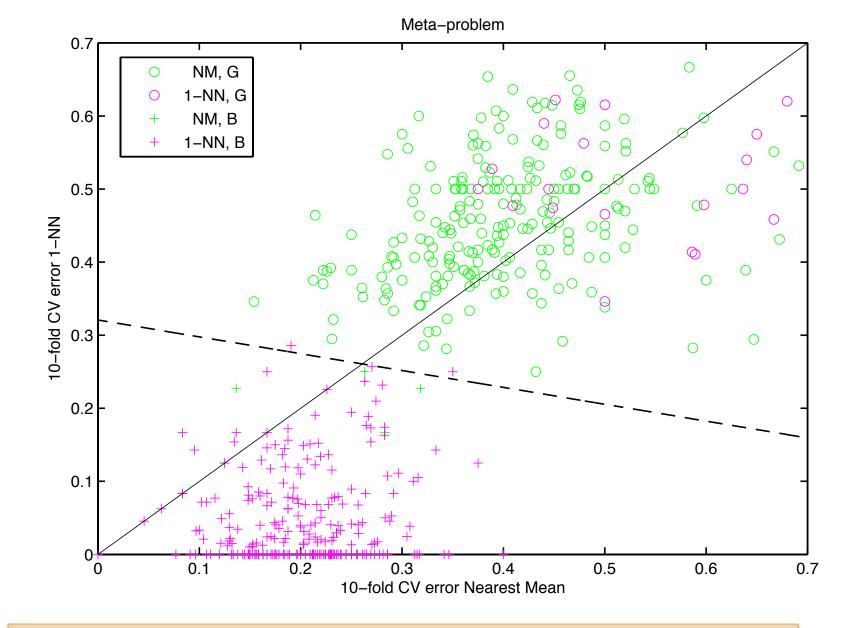
Banana Set

In the second second



- Randomly vary the distance
- Generate 500 problems
- $G = \{G_1, G_2, \dots, G_{500}\}$
- High Bayes error

- Randomly vary the width (variance)
- Generate 500 problems
- $B = \{B_1, B_2, \dots, B_{500}\}$
- Low Bayes error



Error: 0.16 -> 0.06 (learning makes a difference)

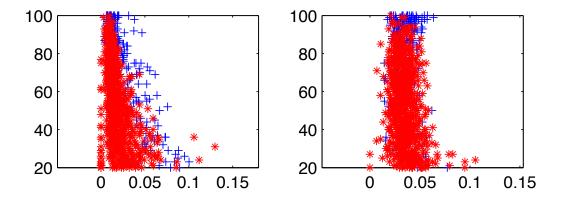
Additional meta-features (1/2)

Can characteristics of the data improve classifier selection after we know the cross validation errors?

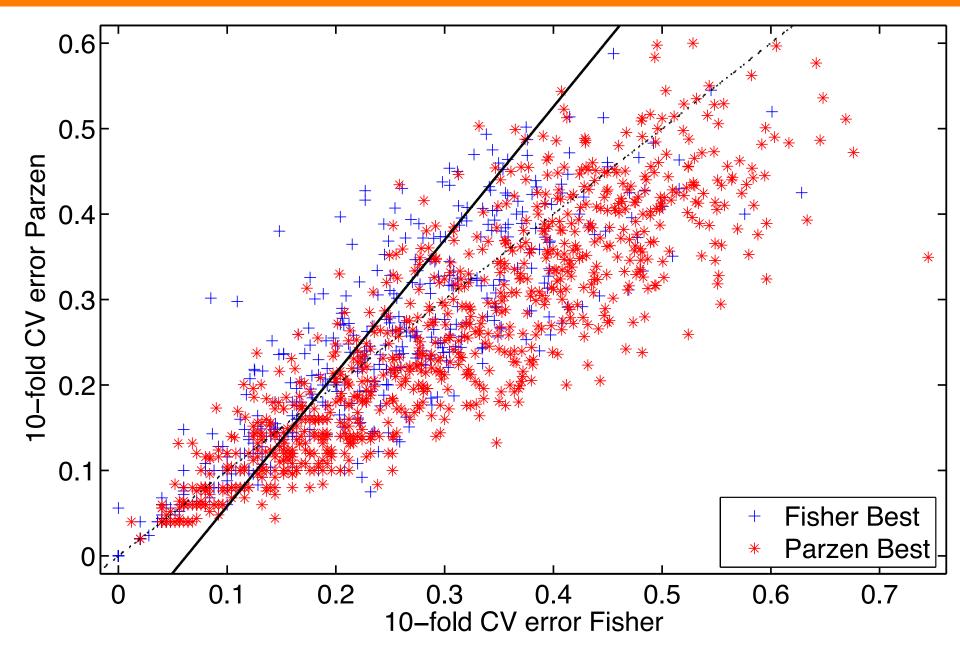
- Classifiers: Nearest mean and Least Squares
- Elongated boundary problem (100 dimensions)
- Randomness
 - Class priors
 - Number of objects (20-100)
- Extra features
 - Number of objects *n*
 - Variance of the cross-validation errors

Additional meta-features (2/2)

Classifier	CV errors	+n	+Variance	+n & Variance
CV- selection	0.237			
k-NN	0.238	0.151	0.221	0.127
LDA	0.241	0.159	0.239	0.110



Pseudo real-world data



Pseudo real-world data

Classifier	Best on
Nearest Mean	236
k-Nearest Neighbor	118
Fisher	243
Quadratic Discriminant	32
Parzen Density	286
Decision Stump (Purity Criterion)	221
Linear Support Vector Machine	164
Radial Basis Support Vector Machine	200

Classifier	CV errors	+Variance
CV- selection	0.695	
k-NN	0.605	0.587
LDA	0.618	0.599

Conclusion

- There are universes were **meta-learning can outperform cross-validation** based classifier selection
- Additional statistics of the data can aid in classifier selection
- Some indication this works on real-world datasets, more experiments are needed
- Evidence to support meta-learning not just as a timeefficient alternative to cross-validation, but potentially more accurate