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Classifier Selection Problem

Classification problem
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Which classifier gives the lowest error rate €
when evaluated on a large test set?




A Practical Solution

* In practice: have no large test set to determine e

» Alternative: estimate € through a cross-validation procedure, e_
* Procedure is practically unbiased and intuitive

» Use the estimates of each classifier to select the best one

o Used for:
— Classifier selection
— Parameter tuning
— Feature selection
— Performance estimation



[s 1t possible to use meta-learning techniques to improve
the accuracy (rather than the computational efficiency) of
classifier selection using cross-validation?



Cross-validation revisited (1/2)

* C={c,,..c.,} asetof classifiers, D a dataset

e (Calculate the k-fold cross-validation error

1. Randomly assign the n objects in the dataset to k parts
(folds)

Use fold 2 to k to train a classifier
Use fold 1 to test its accuracy [
Cycle through, using each fold as the test set once

Average the accuracies over all the folds
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* C={c,,..c.,} asetof classifiers, D a dataset
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Cross-validation revisited (2/2)

* Select the classifier with lowest e
e Bias decreases as k increases

n

— Unbiased as estimator for n-
— Small bias for reasonable k, large n

« For a particular dataset, interested in the difference € and écv

* Variance
— High as k goes ton
— High as k goes to 2
— Lowest usually around 5-10
— Higher than for bootstrap and resubstition



Why would cross-validation rail?

* As Braga-Neto et. al. 2004 and others note,

if nis small, variance of the cross-validation
error estimate becomes large

 Cross-validation error estimates become
unreliable for a given dataset

 Specifically: classifier selection based on these
estimates may suffer



Meta-learning (1/2)

* Learning which classifier to select based on
characteristics of the dataset

 Classifier selection as just another classification
problem

— Classes: the most accurate classifier
— Features: statistics on the dataset (meta-features)

* Meta-features are preferably
— Computationally efficient
— Predictive
— Interpretable



Meta-learning (2/2)

Datasets Measures Parameterization of dataset space
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Cross-validation selection as meta-learning

e Cross-validation errors are measures on

the dataset as well
* |dea: Treat them as

meta-features

* Meta-classifier in this case:

— Select the classifier
validation error

— Static diagonal rule

with the lowest cross-

Meta-classes

Best classifier (m)

Meta-features

Cross-validation error (m)

Meta-classifier

Static ‘diagonal’ rule




Cross-validation Meta-problem

Datasets Measures Parameterization of dataset space
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A Meta-learning Universe (1/3)

* Choice between two simple classifiers:
— Nearest Mean
— 1-Nearest Neighbor

* Two simple problem types
— Each suited to one of the classifiers
— Small training samples (20-100)
— Generate enough data to estimate the real error (~20000)
— Problem types have equal priors

* Slightly contrived
— Visualization
— Illustrate Concept



A Meta-learning Universe (2/3)

Gaussian problem Banana Set
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* Randomly vary the * Randomly vary the width
distance (variance)

* Generate 500 problems * Generate 500 problems

¢ G={G,,G,,...,Geyl * B={By,B,,.. By}

* High Bayes error * Low Bayeserror
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Additional meta-features (1/2)

Can characteristics of the data improve classifier
selection after we know the cross validation errors?

Classifiers: Nearest mean and Least Squares
Flongated boundary problem (100 dimensions)

Randomness

— Class priors

— Number of objects (20-100)
Fxtra features

— Number of objects n

— Variance of the cross-validation errors

Difficult Dataset
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Additional meta-teatures (2/2)
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Pseudo real-world data

10—fold CV error Parzen

+ Fisher Best
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Pseudo real-world data

Classifier Best on
Nearest Mean 236
k-Nearest Neighbor 118
Fisher 243
Quadratic Discriminant 32
Parzen Density 286
Decision Stump (Purity Criterion) 221
Linear Support Vector Machine 164
Radial Basis Support Vector Machine 200

Classifier CV errors +Variance

CV- 0.695

selection

K-NN 0.605 0.587

LDA 0.618 0.599



Conclusion

* There are universes were meta-learning can |
outperform cross-validation based classifier selection

e Additional statistics of the data can aid in classifier
selection

 Some indication this works on real-world datasets,
more experiments are needed

* Evidence to support meta-learning not just as a time-
efficient alternative to cross-validation, but
potentially more accurate



