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Classifier Selection Problem
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Which classifier gives the lowest error rate    
when evaluated on a large test set?
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A Practical Solution

•  In practice: have no large test set to determine 
•  Alternative: estimate      through a cross-validation procedure, 
•  Procedure is practically unbiased and intuitive
•  Use the estimates of each classifier to select the best one
•  Used for:

–  Classifier selection
–  Parameter tuning
–  Feature selection
–  Performance estimation
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Goal

Is it possible to use meta-learning techniques to improve 
the accuracy (rather than the computational efficiency) of  
classifier selection using cross-validation? 



Cross-validation revisited (1/2)

•  C={c1,..cm} a set of classifiers, D a dataset
•  Calculate the k-fold cross-validation error

1.  Randomly assign the n objects in the dataset to k parts 
(folds)

2.  Use fold 2 to k to train a classifier
3.  Use fold 1 to test its accuracy
4.  Cycle through, using each fold as the test set once
5.  Average the accuracies over all the folds

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold10 D 
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Cross-validation revisited (2/2)

•  Select the classifier with lowest 
•  Bias decreases as k increases

–  Unbiased as estimator for  
–  Small bias for reasonable k, large n


•  For a particular dataset, interested in the difference      and
•  Variance

–  High as k goes to n
–  High as k goes to 2
–  Lowest usually around 5-10
–  Higher than for bootstrap and resubstition
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Why would cross-validation fail?

•  As Braga-Neto et. al. 2004 and others note, 
if n is small, variance of the cross-validation 
error estimate becomes large


•  Cross-validation error estimates become 

unreliable for a given dataset

•  Specifically: classifier selection based on these 
estimates may suffer



Meta-learning (1/2)

•  Learning which classifier to select based on 
characteristics of the dataset

•  Classifier selection as just another classification 
problem
–  Classes:    the most accurate classifier
–  Features:  statistics on the dataset (meta-features)

•  Meta-features are preferably
–  Computationally efficient
–  Predictive
–  Interpretable



Meta-learning (2/2)
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Cross-validation selection as meta-learning 

•  Cross-validation errors are measures on 
the dataset as well

•  Idea: Treat them as meta-features
•  Meta-classifier in this case:

– Select the classifier with the lowest cross-
validation error

– Static diagonal rule

Meta-classes Best classifier (m) 

Meta-features Cross-validation error (m) 

Meta-classifier Static ‘diagonal’ rule 



Cross-validation Meta-problem
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Cross-validation Meta-problem
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Is this simple, static rule justified? 



A Meta-learning Universe (1/3)

•  Choice between two simple classifiers: 
–  Nearest Mean 
–  1-Nearest Neighbor

•  Two simple problem types
–  Each suited to one of the classifiers
–  Small training samples (20-100)
–  Generate enough data to estimate the real error (~20000)
–  Problem types have equal priors

•  Slightly contrived
–  Visualization
–  Illustrate Concept



A Meta-learning Universe (2/3)

•  Randomly vary the 
distance

•  Generate 500 problems
•  G={G1,G2,…,G500}
•  High Bayes error

•  Randomly vary the width 
(variance)

•  Generate 500 problems
•  B={B1,B2,…,B500}
•  Low Bayes error



Error: 0.16 -> 0.06         (learning makes a difference)
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Additional meta-features (1/2)


•  Classifiers: Nearest mean and Least Squares
•  Elongated boundary problem (100 dimensions)
•  Randomness

–  Class priors
– Number of objects (20-100)

•  Extra features
– Number of objects n
–  Variance of the cross-validation errors

Can characteristics of the data improve classifier 
selection after we know the cross validation errors? 



Additional meta-features (2/2) 
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Pseudo real-world data
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Pseudo real-world data 

Classifier CV errors +Variance 

CV-
selection 

0.695 

k-NN 0.605 0.587 

LDA 0.618 0.599 

Classifier Best on
Nearest Mean 236
k-Nearest Neighbor 118
Fisher 243
Quadratic Discriminant 32
Parzen Density 286
Decision Stump (Purity Criterion) 221
Linear Support Vector Machine 164
Radial Basis Support Vector Machine 200

Table 1: List of classifiers the meta-learners have to select between and the
corresponding number of datasets they perform best on (class priors). There
are a total of 1500 datasets in the meta-problem.

To simulate a real-world setting, we include a larger set of
classifiers in the selection. The list and corresponding meta-
class prior on the 1500 problems can be found in Table 1. Al-
though set of classifiers will be comprehensive, we have at-
tempted to include different types of classifiers in the mix, while
keeping the number of classifiers in check. The table shows the
number of problems in the meta-problem on which each clas-
sifier has lowest error on the test set. Except for the quadratic
discriminant, most classifiers seem to have a similar number of
problems where they perform best.

Results

Figure 3 shows the meta-problem of choosing between the
Fisher classifier and the Parzen classifier. Compare this to the
meta-learning space from our first experiment in Figure 2. Im-
provements in the classification boundary are more difficult in
this real universe due to the large class overlap. In fact, the
difference in selection error between the cross-validation selec-
tion rule and the linear discriminant meta-learner in the figure
is only 0.015.

Selecting from the full-set of 8 classifiers, cross-validation
selection has a selection error of 0.695. Using the restricted
leave-one-set out cross-validation strategy, a linear discrimi-
nant meta-learner gives a selection error of 0.618, a difference
of 0.077. A k-nearest neighbor meta-learner does even better
with an error rate of 0.605. The learning is not just caused by
knowing the most common best classifier, as this strategy gives
a selection error as high as 0.809.

By including additional meta-features we can get even more
performance improvement. Adding the cross-validation vari-
ances (similar to the previous experiment in section 4.3, using
5 repeats), the linear discriminant error becomes 0.599 whereas
the k-nearest neighbor error becomes 0.587, a total improve-
ment of 0.108.

Somewhat surprisingly, using unrestricted cross-validation
to evaluate the meta-classifiers yields very similar, although
somewhat more optimistic error rates for the meta-learners. This
might indicate the dependency between datasets generated from
the same original problem may not be as troublesome as we
feared. Estimating the difference in error rates between the
best classifier and the chosen classifier using this unrestricted
cross-validation gives an average difference of 0.018 for cross-
validation selection. The k-nearest neighbor meta-learner addi-

tional meta-features attains an average difference of 0.014. The
variances are approximately equal.

5. Discussion

5.1. Simulations

In our first example, in section 4.2, the reason meta-learning
in this universe is possible seems clear. By construction, all
problems with high Bayes error belong to one type of problem
and have one optimal classifier whereas low Bayes error prob-
lems have a different type and optimal classifier. So, the meta-
learner predicts problems with high errors (of either classifier)
are Gaussian in nature and that low error corresponds to Banana
type problems. The reason for choosing this extreme example
is didactic: the extreme case visually shows the possible dif-
ference between the optimal decision boundary and the static
cross-validation selection boundary. But, even if we were to
reduce the large differences between the error on the Gaussian
datasets and the Banana datasets meta-learning still shows im-
provements over the static rule, although the effects are smaller
and visually less distinct.

Whereas the reason learning is possible in this extreme sce-
nario seems clear, it is less clear why learning is possible if we
make the problem types more similar. One explanation is that,
simply by allowing a more flexible meta-learner instead of a
static rule, the meta-learner can adjust for slight differences in
the probabilities of different classifiers in different parts of the
meta-space.

Another possible explanation may come from the sources
of uncertainty that make the cross-validation errors unreliable.
The difference between the true error etrue and the cross-validation
estimate êcv determine how reliable the cross-validation esti-
mate is. The variance of this difference has various sources
[3, 12]. As [3] also notes, perhaps the most important of these
sources we should consider is the use of surrogate classifiers.
In order to predict the performance of a classifier trained on n

samples, we use k classifiers, 1 for each fold, estimated on only
n � n

k samples. For complex classifiers and small n, these k

surrogate classifiers can become very different from the actual
classifier we are trying to evaluate. Suppose a simple classifier
works well on a subset of datasets within our meta-problem.
Given the small variance of the errors in the meta-problem, this
subset will form a tight cluster in the meta-space whereas for
other subsets, were the datasets exhibit high variability (in other
words: the surrogates do not form good proxies for the real
classifier), the meta-learner becomes less confident. If a new
dataset is evaluated that belongs to the tight subset of problems,
it will still likely be assigned to this simple classifier, even if
small changes to the error estimate occur.

In other words, the method guards against the high variabil-
ity of the error estimates of complex classifiers. This may also
explain the effectiveness of including the variance estimate of
the cross-validation errors as a meta-feature in our second ex-
periment. This variance is an estimate of the internal variance
referred to above. As this is one part of the full variance [9],
it could form a low-biased estimate of the full variance of a
cross-validation error.
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Conclusion

•  There are universes were meta-learning can 
outperform cross-validation based classifier selection

•  Additional statistics of the data can aid in classifier 
selection

•  Some indication this works on real-world datasets, 
more experiments are needed

•  Evidence to support meta-learning not just as a time-
efficient alternative to cross-validation, but 
potentially more accurate


