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Abstract. We introduce a novel semi-supervised version of the least
squares classifier. This implicitly constrained least squares (ICLS) clas-
sifier minimizes the squared loss on the labeled data among the set of
parameters implied by all possible labelings of the unlabeled data. Unlike
other discriminative semi-supervised methods, our approach does not in-
troduce explicit additional assumptions into the objective function, but
leverages implicit assumptions already present in the choice of the super-
vised least squares classifier. We show this approach can be formulated
as a quadratic programming problem and its solution can be found us-
ing a simple gradient descent procedure. We prove that, in a certain
way, our method never leads to performance worse than the supervised
classifier. Experimental results corroborate this theoretical result in the
multidimensional case on benchmark datasets, also in terms of the error
rate.

1 Introduction

Semi-supervised classification concerns the problem of using additional unla-
beled data, aside from only labeled objects considered in supervised learning,
to learn a classification function. The challenge of semi-supervised learning is
to incorporate this additional information to improve the classification function
over the supervised function.

The goal of this work is to build a semi-supervised version of the least squares
classifier that has the property that, at least in expectation, its performance is
not worse than supervised least squares classification. While it may seem like
an obvious requirement for any semi-supervised method, current approaches to
semi-supervised learning do not have this property. In fact, performance can
significantly degrade as more unlabeled data is added, as has been shown in [6,
7], among others. This makes it difficult to apply these methods in practice,
especially when there is a small amount of labeled data to identify possible
reduction in performance. A useful property of any semi-supervised learning
procedure would therefore be that its performance does not degrade as we add
more unlabeled data.

We present a novel approach to semi-supervised learning for the least squares
classifier that we will refer to as implicitly constrained least squares classifica-
tion (ICLS). ICLS leverages implicit assumptions present in the supervised least



squares classifier to construct a semi-supervised version. This is done by mini-
mizing the supervised loss function subject to the constraint that the solution
has to correspond to the solution of the least squares classifier for some label-
ing of the unlabeled objects. Through this formulation, we exploit constraints
inherent in the choice of the supervised classifier whereas current state-of-the-
art semi-supervised learning approaches typically rely on imposing additional
extraneous, and possibly incorrect, assumptions [19, 20].

This work considers a semi-supervised version of the supervised least squares
classifier, in which classes are encoded as numerical outputs after which a lin-
ear regression model is applied (see section 3.1). By placing a threshold on the
output of this model, one can use it to predict class labels. In a different neural
network formulation, this classifier is also known as Adaline [22]. There are sev-
eral reasons why the least squares classifier is a particularly interesting classifier
to study: First of all, the least squares classifier is a discriminative classifier.
Some have claimed semi-supervised learning without additional assumptions is
impossible for discriminative classifiers [19, 20]. Our results show this may not
strictly hold. Secondly, as we will show in section 3.2, the closed-form solution for
the supervised least squares classifier allows us to study its theoretical proper-
ties. Moreover, using the closed-form solution we can rewrite our semi-supervised
approach as a quadratic programming problem, which can be solved through a
simple gradient descent with boundary constraints. Lastly, least squares classifi-
cation is a useful and adaptable classification technique allowing for straightfor-
ward use of, for instance, regularization, sparsity penalties or kernelization [8,
18, 16, 21]. Using these formulations, it has been shown to be competitive with
state-of-the-art methods based on loss functions other than the squared loss [18]
as well as computationally efficient on large datasets [3].

The main contributions of this paper are

– A novel convex formulation for robust semi-supervised learning using squared
loss (Equation (5))

– A proof that this procedure never reduces performance in terms of the
squared loss for the 1-dimensional case (Theorem 1)

– An empirical evaluation of the properties of this classifier (Section 5)

We start with a discussion of related work after which we introduce our semi-
supervised version of the least squares classifier. In Sections 4 and 5, we study the
non-degradation property of this method both theoretically and by considering
the method’s behaviour on benchmark datasets. In the final sections we discuss
the results and conclude.

2 Related Work

Many diverse semi-supervised learning techniques have been proposed [5, 23].
Most of these techniques rely on introducing useful assumptions that link infor-
mation about the distribution of the features PX to the posterior of the classes
PY |X . Some have argued unlabeled data can only help if PX and PY |X are



somehow linked through one of these assumptions [20]. While these methods
have proven successful in particular applications, such as document classifica-
tion [14], it has also been observed that these techniques may give performance
worse than their supervised counterparts, see [6, 7], among others. In these cases,
disregarding the unlabeled data would lead to better performance.

The method considered in our work is different from most previous work in
semi-supervised learning in that it is inherently robust against this decrease in
performance. We show that one does not need extrinsic assumptions for semi-
supervised learning to work. In fact, such assumptions may actually be at the
root of the problem: clearly if such an additional assumption is correct, the
semi-supervised classifier can gain from it, but if the assumption is incorrect,
degraded performance may ensue. What we will leverage in our approach are
the implicit assumptions that are, in a sense, intrinsic to the supervised least
squares classifier. This work is in line with the proposal of [12, 11] which set out
to improve likelihood based classifiers in a similar way. Our approach, however,
does not rely on explicitly formulating the intrinsic constraints on the estimated
parameters. Moreover, our approach allows for theoretical analysis of the non-
deterioration of the performance of the procedure.

Another attempt to construct a robust semi-supervised version of a super-
vised classifier has been made in [10], which introduces the safe semi-supervised
support vector machine (S4VM). This method is an extension of semi-supervised
SVM [2] which constructs a set of low-density decision boundaries with the help
of the additional unlabeled data, and chooses the decision boundary, which,
even in the worst-case, gives the highest gain in performance over the supervised
solution. If the low-density assumption holds, it can be proven this procedure
increases classification accuracy over the supervised solution. The main differ-
ence with the method considered in this paper, however, is that we make no such
additional assumptions. We show that even without such assumptions, robust
improvements are possible for the least squares classifier.

3 Method

3.1 Supervised Multivariate Least Squares Classification

Least squares classification [8, 18] is the direct application of well-known ordinary
least squares regression to a classification problem. A linear model is assumed
and the parameters are minimized under squared loss. Let X be an L× (d+ 1)
design matrix with L rows containing vectors of length equal to the number of
features d plus a constant feature to encode the intercept. Vector y denotes an
L × 1 vector of class labels. We encode one class as 0 and the other as 1. The
multivariate version of the empirical risk function for least squares regression is
given by

R̂(β) =
1

n
‖Xβ − y‖22 (1)



The well known closed-form solution for this problem is found by setting the
derivative with respect to β equal to 0 and solving for β, giving:

β̂ =
(
XTX

)−1
XTy (2)

In case XTX is not invertible (for instance when n < (d+ 1)), a pseudo-inverse
is applied. As we will see, the closed form solution to this problem will enable
us to formulate our semi-supervised learning approach in terms of a standard
quadratic programming problem, which is easy to optimize.

3.2 Implicitly Constrained Least Squares Classification

In the semi-supervised setting, apart from a design matrix X and target vector y,
an additional set of measurements Xu of size U×(d+1) without a corresponding

target vector yu is given. In what follows, Xe =
[
XT XT

u

]T
denotes the extended

design matrix which is simply the concatenation of the design matrices of the
labeled and unlabeled objects.

In the implicitly constrained approach, we propose that a sensible solution
to incorporate the additional information from the unlabeled objects is to search
within the set of classifiers that can be obtained by all possible labelings yu, for
the one classifier that minimizes the supervised empirical risk function (1). This
set, Cβ, is formed by the β’s that would follow from training supervised classifiers
on all (labeled and unlabeled) objects going through all possible soft labelings
for the unlabeled samples, i.e., using all yu ∈ [0, 1]U . Since these supervised
solutions have a closed form, this can be written as:

Cβ :=

{
β =

(
X>e Xe

)−1
X>e

[
y
yu

]
: yu ∈ [0, 1]U

}
(3)

This constrained region Cβ, combined with the supervised loss that we want to
optimize in equation (1), gives the following definition for implicitly constrained
semi-supervised least squares classification:

argmin
β∈Rd+1

1

n
||Xβ − y||2

subject to β ∈ Cβ
(4)

Since β is fixed for a particular choice of yu and has a closed form solution, we
can rewrite the minimization problem in terms of yu instead of β:

argmin
yu

1

n

∥∥∥∥X (X>e Xe

)−1
X>e

[
y
yu

]
− y

∥∥∥∥2
2

subject to yu ∈ [0, 1]U
(5)

Solving for yu gives a labeling that we can use to construct the semi-supervised
classifier using equation (2) by considering the imputed labels as the labels for



the unlabeled data. The problem defined in equation (5), is a standard quadratic
programming problem. Due to the simple box constraints on the unknown labels
this can be solved efficiently using a quasi-Newton approach that takes into
account the simple [0, 1] bounds, such as L-BFGS-B [4].

4 Theoretical Results

We will examine this procedure by considering it in a simple, yet illustrative
setting. In this case we will, in fact, prove this procedure will never give worse
performance than the supervised solution. Consider the case where we have
just one feature x, a limited set of labeled instances and assume we know the
probability density function of this feature fX(x) exactly. This last assumption
is similar to having unlimited unlabeled data. We consider a linear model with
no intercept: y = xβ where y is set as 0 for one class and 1 for the other. For
new data points, estimates ŷ can be used to determine the predicted label of an
object by using a threshold set at, for instance, 0.5.

The expected squared loss, or risk, for this model is given by:

R∗(β) =
∑

y∈{0,1}

∫ ∞
−∞

(xβ − y)2fX,Y (x, y)dx (6)

Where fX,Y = P (y|x)fX(x). We will refer to this as the joint density of X and
Y. Note, however, that this is not strictly a density, since it deals with the joint
distribution over a continuous X and a discrete Y . The optimal solution β∗ is
given by the β that minimizes this risk:

β∗ = argmin
β∈R

R∗(β) (7)

We will show the following result:

Theorem 1. Given a linear model without intercept, y = xβ, and fX(x) known,
the estimate obtained through implicitly constrained least squares always has an
equal or lower risk than the supervised solution:

R∗(β̂semi) ≤ R∗(β̂sup)

Proof. Setting the derivative of (6) with respect to β to 0 and rearranging we
get:

β =

(∫ ∞
−∞

x2fX(x)dx

)−1 ∑
y∈{0,1}

∫ ∞
−∞

xyfX,Y (x, y)dx (8)

=

(∫ ∞
−∞

x2fX(x)dx

)−1 ∫ ∞
−∞

xfX(x)
∑

y∈{0,1}

yP (y|x)dx (9)

=

(∫ ∞
−∞

x2fX(x)dx

)−1 ∫ ∞
−∞

xfX(x)E[y|x]dx (10)
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Fig. 1. An example where implicitly constrained optimization improves performance.
The supervised solution β̂sup which minimizes the supervised loss (the solid curve), is
not part of the interval of allowed solutions. The solution that minimizes this supervised
loss within the allowed interval is β̂semi. This solution is closer to the optimal solution
β∗ than the supervised solution β̂sup.

In this last equation, since we assume fX(x) as given, the only unknown is the
function E[y|x], the expectation of the label y, given x. Now suppose we consider
every possible labeling of the unlimited number of unlabeled objects including
fractional labels, that is, every possible function where E[y|x] ∈ [0, 1]. Given this
restriction on E[y|x], the second integral in (10) becomes a re-weighted version
of the expectation operation E[x]. By changing the choice of E[y|x] one can vary
the value of this integral, but it will always be bounded on an interval on R. It
follows that all possible βs also form an interval on R, which we will refer to as
the constrained set Cβ. The optimal solution has to be in this interval, since it
corresponds to a particular but unknown labeling E[y|x]. Note from (10) that
the boundaries of this interval are typically finite, unless the second moment of
X is equal to 0.

Using the set of labeled data, we can construct a supervised solution β̂sup
that minimizes the loss on the training set of L labeled objects, see Figure 1:

β̂sup = argmin
β∈R

L∑
i=1

(xiβ − yi)2 (11)

Now, either this solution falls within the constrained region, β̂sup ∈ Cβ or

not, β̂sup /∈ Cβ, with different consequences:

1. If β̂sup ∈ Cβ there is a labeling of the unlabeled points that gives us the same
value for β. Therefore, the solution falls within the allowed region and there
is no reason to update our estimate. Therefore β̂semi = β̂sup.

2. Alternatively, if β̂sup /∈ Cβ, the solution is outside of the constrained region
(as shown in Figure 1): there is no possible labeling of the unlabeled data that



will give the same solution as β̂sup. We then update the β to be the β within
the constrained region that minimizes the loss on the supervised training set.
As can be seen from Figure 1, this will be a point on the boundary of the
interval. Note that β̂semi is now closer to β∗ than β̂sup. Since the true loss
function R∗(β) is convex and achieves its minimum in the optimal solution,
corresponding to the true labeling, the risk of our semi-supervised solution
will always be equal to or lower than the loss of the supervised solution.

Thus, the proposed update either improves the estimate of the parameter β
or it does not change the supervised estimate. In no case will the semi-supervised
solution be worse than the supervised solution, in terms of the expected squared
loss.

5 Empirical Results

Since we extended the least squares classifier to the semi-supervised setting, we
compare how, for different sizes of the unlabeled sample, our semi-supervised
least squares approach fares against supervised least squares classification with-
out the constraints. For comparison we included an alternative semi-supervised
approach by applying self-learning to the least squares classifier. In self-learning
[13], the supervised classifier is updated iteratively by using its class predictions
on the unlabeled objects as the labels for the unlabeled objects in the next
iteration. This is done until convergence.

A description of the datasets used for our experiments is given in Table 1. We
use datasets from both the UCI repository [1] and from the benchmark datasets
proposed by [5]. While the benchmark datasets proposed in [5] are useful, in our
experience, the results on these datasets are very homogeneous because of the
similarity in the dimensionality and their low Bayes errors. The UCI datasets
are more diverse both in terms of the number of objects and features as well as
the nature of the underlying problems. Taken together, this collection allows us
to investigate the properties of our approach for a wide range of problems.

5.1 Comparison of Learning Curves

We study the behavior of the expected classification error of the ICLS procedure
for different sizes for the unlabeled set. This statistic has two desired properties.
First of all it should never be higher than the expected classification error of
the supervised solution, which is based on only the labeled data. Secondly, the
expected classification error should not increase as we add more unlabeled data.

Experiments were conducted as follows. For each dataset, L labeled points
were randomly chosen, where we make sure it contains at least 1 object from
each of the two classes. With fewer than d samples, the supervised least squares
classifier is known to deteriorate in performance as more data is added, a be-
havior known as peaking [15, 17]. Since this is not the topic of this work, we will
only consider the situation in which the labeled design matrix is of full rank,



Table 1. Description of the datasets used in the experiments. Features indicates the
dimensionality of the design matrix after categorical features are expanded into dummy
variables.

Name # Objects # Features Source

Ionosphere 351 33 [1]
Parkinsons 195 22 [1]
Diabetes 768 8 [1]

Sonar 208 60 [1]
SPECT 267 22 [1]
SPECTF 267 44 [1]
WDBC 569 30 [1]

Digit1 1500 241 [5]
USPS 1500 241 [5]

COIL2 1500 241 [5]
BCI 400 118 [5]

g241d 1500 241 [5]

which we ensure by setting L = d + 5, the dimensionality and intercept of the
dataset plus five observations. For all datasets we ensure a minimum of L = 20
labeled objects.

Next, we create unlabeled subsets of increasing size U = [2, 4, 8, ..., 1024] by
randomly selecting points from the original dataset without replacement. The
classifiers are trained using these subsets and the classification performance is
evaluated on the remaining objects. Since the test set decreases in size as the
number of unlabeled objects increases, the standard error slightly increases with
the number of unlabeled objects.

This procedure of sampling labeled and unlabeled points is repeated 100
times. The results of these experiments are shown in Figure 2. We report the
mean classification error as well as the standard error of this mean. As can be
seen from the tight confidence bands, this offers an accurate estimate of the
expected classification error.

We find that, generally, the ICLS procedure has monotonically decreasing
error curves as the number of unlabeled samples increases, unlike self-learning.
On the Diabetes dataset, the performance of self-learning becomes worse than
the supervised solution when more unlabeled data is added, while the ICLS
classifier again exhibits a monotonic decrease of the average error rate.

5.2 Benchmark performance

We now consider the performance of these classifiers in a cross-validation setting.
This experiment is set up as follows. For each dataset, the objects are randomly
divided into 10 folds. We iteratively go through the folds using 1 fold as validation
set, and the other 9 as the training set. From this training set, we then randomly
select L = d+ 5 labeled objects, as in the previous experiment, and use the rest
as unlabeled data. After predicting labels for the validation set for each fold, the
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Fig. 2. Mean classification error for L = max(d + 5, 20) and 100 repeats. The shaded
areas indicate +/− the standard error of the mean.

classification error is then determined by comparing the predicted labels to the
real labels. This is repeated 20 times, while randomly assigning objects to folds
in each iteration.

The results shown in Table 2 tell a similar story to those in the previous
experiment. Most importantly for the purposes of this paper, ICLS, in general,
offers solutions that give at least no higher expected classification error than
the supervised procedure. Moreover, in most of the cross-validation repeats, the
error is not higher than the supervised error, although it does occur in some
instances.



Table 2. Average 10-fold cross-validation error and number of times the error of the
semi-supervised classifier is higher than the supervised error for 20 repeats. Oracle
refers to the performance of the least squares classifier trained when all labels are
known. Indicated in bold is when a semi-supervised classifier has significantly lower
error than the other, using a Wilcoxon signed rank test at 0.01 significance level. A
similar test is done to determine whether a semi-supervised classifier is significantly
worse than the supervised classifier, indicated by underlined values.

Dataset Supervised Self-Learning ICLS Oracle

Ionosphere 0.29 0.24 (1) 0.19 (0) 0.13
Parkinsons 0.33 0.29 (3) 0.27 (0) 0.11
Diabetes 0.32 0.33 (16) 0.31 (2) 0.23

Sonar 0.42 0.37 (1) 0.32 (1) 0.25
SPECT 0.42 0.40 (7) 0.33 (0) 0.17
SPECTF 0.44 0.41 (3) 0.36 (0) 0.22
WDBC 0.27 0.17 (0) 0.12 (0) 0.04
Digit1 0.41 0.34 (0) 0.20 (0) 0.06
USPS 0.42 0.35 (0) 0.20 (0) 0.09
COIL2 0.40 0.27 (0) 0.19 (0) 0.10
BCI 0.40 0.35 (0) 0.28 (0) 0.16
g241d 0.45 0.39 (0) 0.29 (0) 0.13

6 Discussion

The results presented in this paper are encouraging in the light of negative
theoretical performance results in the semi-supervised literature [6]. The result
in Theorem 1 indicates the proposed procedure is in some way robust against
reduction in performance. The empirical results in the previous section indicate
a similar result in terms of the expected classification error, at least on this
collection of datasets. These empirical observations are interesting because the
loss that was evaluated in these experiments is misclassification error and not
the squared loss that was considered in Theorem 1. Furthermore the experiments
were carried in the multivariate setting with an intercept term using limited
unlabeled data, rather than the unlimited unlabeled data setting considered in
the theorem. This indicates that minimizing the supervised loss over the subset
Cβ , leads to a semi-supervised learner with desirable behavior, both theoretically
in terms of risk and empirically in terms of classification error.

It has been argued that, for discriminative classifiers, semi-supervised learn-
ing is impossible without additional assumptions about the link between labeled
and unlabeled objects [19, 20]. ICLS, however, is both a discriminative classifier
and no explicit additional assumptions about this link are made. Any assump-
tions that are present follow, implicitly, from the choice of squared loss as the
loss function and from the chosen hypothesis space. One could argue that con-
straining the solutions to Cβ is an assumption as well. While this is true, it
corresponds to a very weak assumption about the supervised classifier: that it
will improve when we add additional labeled data. The lack of additional as-
sumptions has another advantage: no additional parameters need to be correctly



set for the results in sections 4 and 5 to hold. There is, for instance, no parameter
to be chosen for the importance of the unlabeled data. Therefore, implicitly con-
strained semi-supervised learning is a very different approach to semi-supervised
learning than current alternatives.

An open question is what other classifiers could benefit from the implicitly
constrained approach considered here. Using negative log likelihood as a loss
function, for instance, also leads to interesting semi-supervised classifiers, for
instance in linear discriminant analysis [9]. For other classifiers, the definition of
the constraints used in this work might not lead to any useful constraints at all
such that the supervised solution is always recovered. One would have to define
additional constraints on the solutions in Cβ . The minimization of the supervised
loss, considered in this paper, could still be relevant in these cases to construct
a semi-supervised classifier that has similar robustness against deterioration in
performance as ICLS.

7 Conclusion

This contribution introduced a new semi-supervised approach to least squares
classification. By implicitly considering all possible labelings of the unlabeled ob-
jects and choosing the one that minimizes the loss on the labeled observations,
we derived a robust classifier with a simple quadratic programming formula-
tion. For this procedure, in the univariate setting with a linear model without
intercept, we can prove it never degrades performance in terms of squared loss
(Theorem 1). Experimental results indicate that in expectation this robustness
also holds in terms of classification error on real datasets. Hence, semi-supervised
learning for least squares classification without additional assumptions can lead
to improvements over supervised least squares classification both in theory and
in practice.

Acknowledgments

Part of this work was funded by project P23 of the Dutch public-private research
community COMMIT.

References

1. Bache, K., Lichman, M.: {UCI} Machine Learning Repository (2013),
http://archive.ics.uci.edu/ml

2. Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Advances
in Neural Information Processing Systems 11. pp. 368–374 (1998)

3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Pro-
ceedings of COMPSTAT’2010. pp. 177–186. Springer (2010)

4. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing 16(5), 1190–1208
(1995)



5. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT press (2006)
6. Cozman, F., Cohen, I.: Risks of Semi-Supervised Learning. In: Chapelle, O.,

Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning, chap. 4, pp. 56–72. MIT
press (2006)

7. Cozman, F.G., Cohen, I., Cirelo, M.C.: Semi-Supervised Learning of Mixture Mod-
els. In: Proceedings of the Twentieth International Conference on Machine Learn-
ing (2003)

8. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.
Spinger (2001)

9. Krijthe, J.H., Loog, M.: Implicitly Constrained Semi-Supervised Linear Discrimi-
nant Analysis. In: International Conference on Pattern Recognition. pp. 3762–3767.
Stockholm (2014)

10. Li, Y.F., Zhou, Z.H.: Towards Making Unlabeled Data Never Hurt. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 37(1), 175–188 (Jan 2015)

11. Loog, M., Jensen, A.: Semi-supervised nearest mean classification through a con-
strained log-likelihood. IEEE Transactions on Neural Networks and Learning Sys-
tems 26(5), 995–1006 (May 2015)

12. Loog, M.: Semi-supervised linear discriminant analysis through moment-constraint
parameter estimation. Pattern Recognition Letters 37, 24–31 (Mar 2014)

13. McLachlan, G.J.: Iterative Reclassification Procedure for Constructing an Asymp-
totically Optimal Rule of Allocation in Discriminant Analysis. Journal of the Amer-
ican Statistical Association 70(350), 365–369 (1975)

14. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from la-
beled and unlabeled documents using EM. Machine learning 34, 1–34 (2000)

15. Opper, M., Kinzel, W.: Statistical Mechanics of Generalization. In: Domany, E.,
Hemmen, J.L., Schulten, K. (eds.) Models of Neural Networks III, pp. 151–209.
Springer, New York (1996)

16. Poggio, T., Smale, S.: The Mathematics of Learning: Dealing with Data. Notices
of the AMS pp. 537–544 (2003)

17. Raudys, S., Duin, R.P.: Expected classification error of the Fisher linear classifier
with pseudo-inverse covariance matrix. Pattern Recognition Letters 19(5-6), 385–
392 (Apr 1998)

18. Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. Nato Sci-
ence Series Sub Series III Computer and Systems Sciences 190 (2003)

19. Seeger, M.: Learning with labeled and unlabeled data. Tech. rep. (2001)
20. Singh, A., Nowak, R.D., Zhu, X.: Unlabeled data: Now it helps , now it doesnt. In:

Advances in Neural Information Processing Systems. pp. 1513–1520 (2008)
21. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B 58(1), 267–288 (1996)
22. Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: IRE WESCON Convention

Record 4. pp. 96–104 (1960)
23. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning, vol. 3. Morgan

& Claypool (2009)


